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ABSTRACT
Datasets are sometimes divided into distinct subsets, e.g. due to
multi-center sampling, or to variations in instruments, questionnaire
item ordering or mode of administration, and the data analyst then
needs to assess whether a joint analysis is meaningful. The Principal
Component Analysis-based Data Structure Comparisons (PCADSC)
tools are three new non-parametric, visual diagnostic tools for inves-
tigating differences in structure for two subsets of a dataset through
covariance matrix comparisons by use of principal component anal-
ysis. The PCADCS tools are demonstrated in a data example using
European Social Survey data on psychological well-being in three
countries, Denmark, Sweden, and Bulgaria. The data structures are
found to be different in Denmark and Bulgaria, and thus a com-
parison of for example mean psychological well-being scores is not
meaningful. However, when comparing Denmark and Sweden, very
similar data structures, and thus comparable concepts of well-being,
are found. Therefore, inter-country comparisons are warranted for
these countries.
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1. Introduction

Data comparability is a recurring topic in a wide array of statistical applications. Often,
data will be collected in such a way that it is essentially divided into several subsets whose
comparability needs to be assessed empirically. This happens for instance when data are
collected across several centers (or countries) or when different versions of an instrument,
the mode of administration of a survey, or the order of survey questionnaire items are
applied. While a mixture of modes of administration, for example mail and telephone, can
improve response rates in surveys, it can also be quite problematic by inducing differences
in response behavior that may lead to biased results [3,14]. Powers, Mishra, and Young
report effects of mode of administration on changes in mental health scores that are of a
magnitude that is considered to be clinically meaningful [16], so the comparability issue
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is not just a statistical puzzle. Similarly, combining data obtained from different sampling
schemes can also be problematic, as illustrated by Liu, whowarns against combining online
panel data with intercept samples (a pool of respondents obtained through banners, ads,
or promotions) [12]. But mixing several data collection methods is essential for acheiving
further advances in surveying- and data collection methodology, as it allows us to simulta-
neously build on existing methods and answer new empirical questions. However, if we do
not address the question of comparability among the data subsets arriving from e.g. differ-
ent countries, we risk conducting analyses whose most fundamental assumptions are not
satisfied.

The comparability issue in these examples can be summarized as follows: Assume that
we have two datasets with the same variables, but different observations, often represented
as a single dataset with a subset-inducing variable, and that we wish to compare themwith-
out specifying a model, or even a variable of interest. The central question is then whether
the two datasets can readily be combined for the purpose of later data analysis, or if the
subset-inducing variable implies heterogeneity that must be dealt with in later statistical
modeling.

Sophisticated methods for addressing this question are available when we are willing to
assume a statistical model. But this places the effort of assessing data comparability very
late in the data analysis process and it makes the comparability assessment ad-hoc, as it
essentially relies on the appropriateness of the modeling choices, which again depends on
the structure of the data. The use of (parametric) models does thus not constitute a gen-
eral data structure comparison method, but rather a fitted-model comparison method. It
addresses the interplay between themodel and the data, not the data alone.However, useful
tools for initial, exploratory investigations of data comparability are mostly absent. What
is needed are procedures that compare differences in data structures in two subsets of a
dataset without assuming neither directional nor hierarchical relationships between the
variables. Simple methods like variable-by-variable tests of distributional differences suf-
fer from the drawback that they only address marginal differences and ignore the interplay
between variables, but entry-by-entry comparisons of two empirical correlation matrices
quickly become unmanageable as the number of variables increase.

We propose three visual tools for data structure comparisons, which we will refer to col-
lectively as Principal Component Analysis-basedData Structure Comparisons (PCADSC).
These methods use principal component decomposition of the empirical covariance
matrix in the two subsets to create intuitive visualizations of data structure differences. The
use of PCA implies that we can only compare datasets with numerical variables and that
we focus on the linear aspect of the data structures. The proposed tools are implemented
in the R package PCADSC [15].

1.1. Comparing psychological well-being

An example of where the data structure comparability issue must be considered is when
conducting international rankings of countries according to e.g. educational quality (e.g.
the PISA project) and citizen happiness (e.g. the UN World Happiness Report project).
From a methodological point of view, such international rankings are problematic, as they
rely on the fundamental assumption that the measured concepts are inherently the same
across countries.
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Weuse data from the 2012 version of the European Social Survey (ESS) project to inves-
tigate inter-country differences in psychological well-being and happiness. In the rankings
of happiness, notmuch work has yet been devoted to evaluating the assumption of interna-
tional comparability, though Veenhoven presents a theoretically thorough, but empirically
simplistic, summary of possible reasons for lack of comparability [18], while Lolle&Ander-
sen show highly potent translation issues for the term happiness [13]. If for instance two
countries differ in terms of how social networks are typically built and structured, with one
emphasizing family relations and the other mostly focusing on other social relations, then
having a weak family connection does not have the same implications in the first country
as it does in the second one. More specifically, whereas in the first country, lack of familial
network might be related to loneliness, lack of general social capital, and isolation, in the
second country, the quality of the family network might not be informative at all about
other aspects of a person’s social or psychological well-being. The two countries thus differ
in how different aspects or measures of psychological well-being are interrelated, which is
essentially a difference in data structures. And therefore, comparing the two countries in
these measures is not a meaningful endeavor.

Our starting point is Denmark, a small, Northern European country that has repeat-
edly been awarded with the title of ‘happiest country in the world’ by theWorld Happiness
Report, most recently in 2016 [6], and we wish to investigate if this title is really meaningful
at all. In order to do this, we compare the Danish ESS psychological well-being data with
that of Bulgaria. Though both countries are European and thus neither very far apart geo-
graphically nor culturally, these two countries have previously been highlighted to be very
different in terms of what defines happiness [7]. Moreover, intra-European, regional differ-
ences in the relationship between social capital and happiness have also been demonstrated
[17].When comparing Northern European countries to other European countries, a much
less pronounced relationship between the two concepts is found. In particular, interper-
sonal relations play a less important role in Denmark, compared to Bulgaria. Therefore,
a successful method for data comparisons should be able to detect these differences by
looking at data on psychological well-being from these two countries. We also compare
the Danish data with Swedish data in order to investigate if the PCADSC tools actually do
hold discriminatory power. Denmark and Sweden are both Northern European countries
and are often deemed very similar in terms of culture and history. Therefore, we expect
fundamental concepts, such as psychological well-being, to be similar across these two
countries.

2. Methodology

PCADSC compares the covariance matrices of two subsets of a dataset. If all variables in
the subsets are jointly normal with known means, the covariance matrices are sufficient
statistics describing the joint distribution of all the variables, but even without the normal-
ity assumption, pairwise correlations and marginal variable variances are still interesting
quantities describing linear interrelations between variables. This makes the empirical
covariance matrix a reasonable place to start looking for differences in data structures.
Computing empirical covariance matrices for the two subsets and comparing them entry-
by-entry becomes increasingly difficult as the number of variables increases and for this
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reason we decompose and recompose the covariance matrices using principal component
analysis (PCA) to get an overview of differences between the two subsets.

We assume that the variables have been standardized within each data subset before
PCA is conducted so that all variables have mean zero and unit standard deviation. This
is equivalent to working with the empirical correlation matrices rather than the empir-
ical covariance matrices. We also assume that all considered variables have a numerical
interpretation, for example by being continuous or ordinally categorical. Moreover, we
use the following notation: X ∈ R

nx×d and Y ∈ R
ny×d are datasets containing the same

number of variables, d, but possibly different numbers of observations, nx and ny. We
use Xj to refer to the jth variables of X and xij to refer to the ith observation within
that variable, while xi· is the full ith observation row. Note that Xj ∈ R

nx , xij ∈ R, and
xi· ∈ R

d. We let X̄ = (X̄1, . . . , X̄d)
T = (1/nx)

∑
i=1 xi· denote the variable averages and

use Sx = 1/(nx − 1)
∑n

i=i(xi· − X̄)(xi· − X̄)T ∈ R
d×d to denote the empirical covariance

matrix of X.

2.1. Using PCA for data structure comparisons

The tools presented here are all based on comparing the PCA results across two different
datasets that contain the same variables, X and Y. Let

Z =
(
X
Y

)
∈ R

(nx+ny)×d

be the combined dataset. For each of these three datasets, we complete the following steps
(here described for X only):

(1) Standardize each of the variables to have mean zero and unit standard deviation. Let
X̃j ∈ R

nx×d be the standardized dataset.
(2) Form the principal component analyses

Sx = 1
nx − 1

nx∑
i=1

x̃i·x̃�
i· =

d∑
j=1

λxj η
x
j (η

x
j )

�

thereby obtaining loadings ηxj and eigenvalues λxj for j = 1, . . . , d.

The hereby obtained PCA decompositions of the correlation matrices can then be
compared. The standardization implies that the diagonal elements of Sx, Sy, and Sz all equal
1, and thus also that

d∑
j=1

λxj =
d∑

j=1
λ
y
j =

d∑
j=1

λzj = d.

This identity will simplify some expressions below.Wenote that the sequence of loadings ηj
and their associated eigenvalues λj yield a simultaneous description of the structure of the
dataset for all approximating dimensions q. This implies that the loadings and the eigen-
values can be used to investigate the structure of the dataset without the need to decide on
an approximating dimension, q, a priori.
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Figure 1. Graphical representations of models used for simulating example data. Square nodes
represent observed variables, while rounded nodes represent latent variables. Arrows are used to
illustrate causal links.

We present three diagnostic plots that are designed to shine a light on different types
and levels of data structure differences, namely the cumulative eigenvalue (CE) plot, the
angle plot, and the chroma plot. These plots are described in turn below. For the deepest
understanding of the data structure differences in two datasets, we suggest using all of the
three plots in the same order as they are presented. While we describe the three plot types
from a purely theoretical point of view below, we also provide example illustrations as a
supplement to the somewhat technical definitions. These plots are available in Figures 2–4
for the CE-, angle-, and chroma plots, respectively, and they are based on two simulated
datasets:

Dataset A: This dataset contains 1000 independent simulations from the same underlying
model, namelymodel 1 from Figure 1. The observations are randomly divided
into two groups.

Dataset B: This dataset contains 500 independent simulations frommodel 1 fromFigure 1
and 500 independent simulations frommodel 2 in the same figure. The obser-
vations are naturally divided into groups corresponding to which model they
were simulated from.

In model 1 the observed variables V3 and V4 are caused by a common, unobserved
variable L1. Further details on the models and the simulated data are available in the sup-
plementary material, including covariance matrices for the two models, in Appendix A.
In dataset A, all observations stem from the same, underlying data structure and thus, the
PCADSC plots should point towards no notable differences in data structures. In dataset
B, on the other hand, there are two fundamentally different, underlying data structures and
therefore, the PCADSC plots should illustrate this lack of homogeneity in data structures.

2.2. The cumulative eigenvalue plot

The cumulative eigenvalue (CE) plot compares the eigenvalues of the correlation matri-
ces. These eigenvalues represent how much information is withheld in each component
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Figure 2. CE plots for the simulated datasets. Dataset A (with no differences in data structure) in
top panel, and dataset B (where observations stem from different models) in bottom panel. Plots are
annotated with the p-values of the Kolmogorov-Smirnov (KS) and the Cramér-von Mises (CvM) tests
of the null hypothesis of no difference in data structures. The bold, black lines illustrate the observed
cumulative eigenvalue differences, while the shaded areas are 95% confidence bands under the null
hypothesis of no difference in data structures.

in terms of explained variance. Thus, by comparing cumulative sums of eigenvalues, it is
possible to obtain a detailed picture of how the two datasets differ in terms of what com-
ponents are the most informative. In order to investigate whether the same proportion of
the total variation can be described by the same number of principal components in the
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Figure 3. Angle plots for the simulated datasets. Dataset A in top panel and dataset B in bottom panel.
Blue arrows show the principal components of the observations in group 1 decomposed in the coordi-
nate system of the principal components of group 2, while the red arrows illustrate the reverse (Colour
online).

two datasets, we plot a piecewise linear curve connecting the points
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Figure 4. Chromaplots for the simulateddatasets. DatasetA in toppanel anddatasetB in bottompanel.
Eachbar represents aprincipal component and thebars are annotatedwith their cumulativepercentages
of explained variance.

Due to the standardization, the last point will always be equal to (d, 0). Thus, this curve will
begin and end at the x-axis. And the larger excursions it makes away from the first axis,
the less alike the cumulative eigenvalue sums for the two datasets are. Moreover, a positive
cumulative difference implies that dataset X holds more information in the first compo-
nents than dataset Y does. By using the cumulative eigenvalues of Z as the first coordinate,
we obtain a visualization where a component take up an amount of horizontal space that
corresponds to the variance explained by the component (that is, its eigenvalue), thereby
letting the more influential components drive the visual impression.
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In order to test whether these cumulative differences are statistical artefacts or if they
represent something real, we have implemented both the Kolmogorov-Smirnov and the
Cramér-von Mises test statistics, which are given by

KS = max
k=1,...,d

∣∣∣∣∣∣
k∑

j=1
λxj −

k∑
j=1

λ
y
j

∣∣∣∣∣∣ , CvM =
d−1∑
k=1

λzk + λzk+1
2

⎛
⎝ k∑

j=1
λxj −

k∑
j=1

λ
y
j

⎞
⎠

2

.

We conduct the tests as permutation tests, that is, by randomly reallocating the combined
and separately standardized datasets into two new datasets of nx and ny observations,
respectively, and then redoing the CE plot steps and recalculating the test statistics. This
should be done a large (e.g. 10,000) number of times. Then, a p-value is obtained by com-
puting the proportion of reallocated datasets that lead to test statistics at least as large as
the one we found for the original datasets.

The permutation test results are also used to visualize the uncertainty of the CE curve
in the plots. In the CE plots shown in the following section, we plot the observed curve
together with 20 of the resampled curves, as well as a shaded region visualizing pointwise
95% coverage intervals. If the observed curve is very different from the resampled curves or
if it is substantially outside the shaded region, then this also indicates differences between
the two datasets.

Two examples of cumulative eigenvalue plots are available in Figure 2. In the top panel,
we see a cumulative eigenvalue curve that falls well within the confidence region, thereby
suggesting no difference in eigenvalues (as expected). This also agrees with the large p-
values and the fact that only a single underlying model was used for generating this data.
In the bottom panel, the conclusion is reversed, which is also in accordance with the nature
of the simulated data, which contains two distinct groups.

2.3. The angle plot

The angle plot compares both loadings and eigenvalues at once and it can be used to under-
stand the information loss if the data structure of one dataset is superimposed on the other,
thereby revealing which principal components (i.e. loading and eigenvalue pairs) are most
similar and most different across the two datasets. Let λmax = max{λx1, λy1} be the largest
eigenvalue for the two datasets. Then the empirical correlation matrix for the X dataset,
Sx, has the following orthogonal decomposition in the coordinate system of the Y dataset

Sx =
d∑

j=1
λxj η

x
j (η

x
j )

� = λmax

d∑
k=1

⎛
⎝ d∑

j=1

√
λxk

λmax
η
y
j (η

y
j
�
ηxk)

⎞
⎠

⎛
⎝ d∑

j=1

√
λxk

λmax
η
y
j (η

y
j
�
ηxk)

⎞
⎠

�

,

and we have a similar decomposition of Sy in the coordinate system of the X dataset. We
propose to visualize these two decompositions in a d × d grid display. In the jth row and
kth column of this display we plot two arrows based at the lower left corner of the grid cell.
The first arrow has length μjk and angle θjk/2 counterclockwise from the diagonal, and
the second arrow has length νjk and angle θjk/2 clockwise from the diagonal. To facilitate
the following description we will refer to the arrows drawn counterclockwise as the blue
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arrows, and the arrows drawn clockwise as the red arrows. The lengthsμjk and νjk, and the
angle θjk, are given by

μjk =
√

λxk
λmax

|ηxk�
η
y
j |, νjk =

√
λ
y
j

λmax
|ηyj

�
ηxk|, θjk = arccos(|ηxk�

η
y
j |).

For two d-dimensional, unit length vectors a and b, it holds that a�b = 〈a, b〉 = c̃(a, b),
where c̃ denotes the empirical correlation function. Thus, in the angle plot, we are essen-
tially looking at the absolute values of correlations between loadings that have been scaled
according to their variance contributions. The absolute value of the projection ηxk

�η
y
j is

inserted due to the indeterminacy of the direction of loading vectors. This indeterminacy
implies that the angle between loadings from the two datasets can always be chosen to be in
the interval [0,π/2], and hence the decomposition of Sx and Sy can be visualized in a joint
plot by dividing the angles by two and using counterclockwise and clockwise shifts from
the diagonal. Furthermore, the scaling of the lengths by λmax is made so that the longest
arrow has at most unit length.

In the angle plot, the blue arrows in the kth column of the grid display visualize the
decomposition of the kth principal component of the A dataset in the coordinate system
of the B dataset. Similarly, the red arrows in the jth row visualize the decomposition of the
jth principal components of the B dataset in the coordinate system of the A dataset. If we
have coinciding blue and red arrows along the diagonal in the grid display, and arrows of
vanishing lengths in the off-diagonal cells, then the structures of the two datasets are iden-
tical. In contrast, differences in the eigenvalues are visualized as differences in the lengths
of the blue and the red arrows, also in the diagonal. And loadings in other directions than
the corresponding loading from the other dataset are visualized as angle separation of the
blue and the red arrows in the diagonal cells, as well as arrows of non vanishing length in
the off-diagonal cells.

However, there is a generic situation where the angles between the arrows lack discrimi-
native power, namely when two ormore neighboring eigenvalues are identical or close.We
refer to this situation as eigenvalue indeterminancy. For instance, multiple eigenvalues close
to 1 arise if more than one of the variables are uncorrelated, or close to uncorrelated, of all
the other variables. In this situation only the corresponding eigenspace is well estimated,
but the rotation of the associated eigenvectors will be subject to sampling variability.

To investigate if we are in such a situation of identical data structures with neighboring
eigenvalues being close, where comparably long arrows may occur in the corresponding
blocks of off-diagonal cells, we have implemented a permutation test similar as done for the
CE-plot. For each random reallocation we recompute the angles θjk. The resampled angles
may both be used for quantitative tests, where large angles are critical for the diagonal cells
and small angles are critical for the off-diagonal cells, as well as for the visualization of the
sampled angle regions. In the visualization we propose to present the entire sampled region
of angles for each cell, but gray shaded according to percentiles such that more critical
angles are lighter gray. In our suggested visualizations, we do not present the p-values from
each of the quantitative tests, but the p-values are available in the PCADSC R package [15].

Note that we can compute d2 separate, but dependent, p-values. Therefore, inference
drawn with reference to all of themwill suffer frommultiple testing issues and for that rea-
son, we have devised a global test of difference in loadings.We use a Kolmogorov-Smirnov
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type test statistic, namely

KSangle = max
k=1,...,d2

log
median(k)

pobs
(k)

,

where pobs
(k) is the k’th smallest of the observed p-values and median(k) denotes the median

over the k’th smallest p-values, both for k = 1, . . . , d2. Discrepancy from the null hypoth-
esis of no difference in loadings will be manifested as pobs

(k) � median(k) for some k, and
thus the test statistic can be evaluated as a one-sided test with large values being critical.
A global p-value for loading differences is then computed as a permutation test, similar to
the procedure for the CE plot.

Figure 3 presents two examples of angle plots based on simulated data. For dataset A,
we find very short off-diagonal arrows except for the off-diagonal cells corresponding to
the 3rd and 4th eigenvalues. But since the arrows in cells (3, 4) and (4, 3) lie well within the
shaded angle regions (supported by local p-values 0.9119 and 0.9103) this is in agreement
with identical data structures, where the 3rd and 4th eigenvalues suffer from indetermi-
nancy (in this situation due to the two independent variables in model 1). This is also
supported by a global p-value from the Kolmogorov-Smirnov angle test of p = 0.9988. For
dataset B, on the other hand, we find very little agreement in all components and a global
p-value of 0.0000, which should be expected, as the two groups in the dataset correspond
to different data structures.

2.4. The chroma plot

The chroma plot is primarily an illustration of differences in loading patterns and it targets
the question of how the roles of the original variables are different between the two datasets,
thus leading the data structure comparison question back to its original, empirical context.
The chroma plot consists of two panels, one for each dataset, made up of colored bars.
These bars each represent a principal component and their coloring illustrates the relative
weights of the d original variables, that is, their absolute, normalized loading contributions.
More specifically, when illustrating the ith principal component in the two data subsets, we
plot vertical bars of length one that has been divided into d segments of different colors.
The width of the jth colored segment is given by

ωx
ij =

|ηxij|∑d
k=1|ηxik|

, ω
y
ij =

|ηyij|∑d
k=1|ηyik|

,

where ηxij and η
y
ij denotes the jth entry of η

x
i and η

y
i , respectively. Due to the indeterminacy

of the loading signs, all the signs are removed from the coefficients in the loadings. The
bars are ordered according to the eigenvalues and they are annotated with the cumulative
percentage explained variance of that component, that is, the scaled and summed variance
contributions,

�̃x
i =

∑i
j=1 λxj∑d
k=1 λxk

=
∑i

j=1 λxj

d
, �̃

y
i =

∑i
j=1 λ

y
j∑d

k=1 λ
y
k

=
∑i

j=1 λ
y
j

d
.
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Especially when d is large, we recommend plotting only a select set of interesting
principal components (for instance identified by use of the angle plot). In this sce-
nario, the annotations should rather be the non-cumulative variance contributions, σ̃ x

i =
λxi /d and σ̃

y
i = λ

y
i /d. If there is eigenvalue indeterminancy for neighboring compo-

nents, as discussed above, the loading patterns for these components will not have
a meaningful interpretation. Therefore, one should not compare the chroma bars for
component that were identified to suffer from eigenvalue indeterminancy by the angle
plot.

In Figure 4, two examples of chroma plots are available. For dataset A, we see very sim-
ilar visual patterns across the two panels for components 1, 2, 5 and 6, corresponding well
with the fact that both groups are drawn from the same underlying model. Components
3 and 4 do not have similar loading patterns across the two subsets of the data, but this is
expected since we identified these components to suffer from eigenvalue indeterminancy
in the angle plot. For dataset B, we see different color compositions for the bars in the
left- and the right panel, illustrating that the data structures are not identical for the two
groups. The plots resulting from this procedure should be inspected focusing on two prop-
erties: Similarities in loading patterns, which will correspond to similar visual impressions,
and similarities in variance contributions. For each component, the loadings describe how
influential the different variables are on that component. Therefore, the chroma plot allows
us tomake qualitative statements about the original datasets, such as ‘variable 1 is generally
more influential in subset A than it is in subset B’, thereby helping us to understand where
and why potential data structure differences are found.

2.5. A data structure comparisonworkflow

Finally, we turn to a few comments about how the three plots presented thus far can be used
together. We suggest that the plots are applied in the order in which they were presented,
thereby moving from overall assesments of similarity to explanations about the nature of
potential data structure differences. This workflow is summarized in Figure 5 and should
follow three steps:

(1) Make a CE plot. If this plots suggests similarity in eigenvalues then it is appropri-
ate to move on to the angle plot to assess similarity in loadings. Otherwise, it can be
concluded that the structures of the two datasets are not similar.

(2) Make an angle plot. If this plots suggests similarities in both eigenvalues and loadings,
then the data structure comparison exploration is concluded. If the angle plots sug-
gests differences in data structures, identify which components are responsible for the
differences.

(3) Make a chroma plot of the components selected to be different by the angle plot, but
whose differences are not due to eigenvalue indeterminancy among neighboring com-
ponents. Use this information to discuss how and why the data structures might be
different.

We will now turn to a data example, showing how the PCADSC tools can be used in
practice.
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Figure 5. The PCADSC workflow, starting with two datasets and then successively applying the three
visual tools for obtaining a deeper and deeper understanding of similarities and dissimilarities in the
data structures.

3. Application

We now illustrate the three PCADSC tools using data from the 2012 version of the Euro-
pean Social Survey (ESS) project to investigate inter-country differences in psychological
well-being and happiness. All computations and figures presented in this section were
created using the R package PCADSC [15].

3.1. Data

The ESS 2012 data contain a total of 626 variables collected from54,673 citizens of 29 coun-
tries. Here, we will only work with a subset of 35 questionnaire items that are all related to
psychological well-being. These 35 items can be divided into 6 distinct scales, namely Eval-
uative well-being, Emotional well-being, Functioning, Vitality, Community well-being, and
Supportive relationships. More details on these scales can be found in [7] and the relation-
ship between questionnaire items and scales is summarized in Appendix B. We represent
each of the scales by a single variable, which is calculated as the average score within the
items related to that variable and scaled such that it takes a value between 0 and 10.

For simplicity, we use only complete cases for this construction and thus exclude all
participants that did not answer all the 35 questionnaire items used below. An alternative
approach is to use pairwise complete cases. We present results from PCADSC analyses
using pairwise complete cases inAppendixC, but findnodifferences in conclusions relative
to the results using complete cases (presented below). Note that both of these approaches
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Table 1. Median values of each of the six dimensions of psychological
well-being, stratified by country.

Denmark Bulgaria Sweden

Evaluative well-being 8.75 (8.00, 9.50) 5.00 (3.50, 7.00) 8.00 (7.00, 9.00)
Emotional well-being 8.33 (7.22, 8.89) 6.67 (5.00, 7.78) 7.78 (6.67, 8.89)
Functioning 7.57 (6.93, 8.21) 6.68 (5.50, 7.68) 7.04 (6.39, 7.68)
Vitality 7.50 (6.67, 8.33) 7.50 (5.83, 8.33) 7.50 (6.67, 9.17)
Community well-being 6.77 (5.83,7.57) 4.67 (3.70, 5.70) 6.57 (5.66, 7.37)
Supportive relationships 8.25 (7.42, 8.92) 7.25 (6.17, 8.08) 8.25 (7.42, 8.75)

Note: 25 and 75 percentiles are listed in parentheses. The scales are constructed such
that they all run from 0 to 10.

for handling missing information are only consistent if the data are missing completely at
random [11].

Approximately 9% of the observations in the Danish sample have one or more miss-
ing items, and the corresponding numbers are 20% in the Bulgarian sample and only 6%
in the Swedish sample. All in all, we have nDK = 1498 complete case observations in the
Danish sample, nBG = 1798 observations in the Bulgarian sample and nSE = 1736 Swedish
observations. Figure 1 summarizes the marginal distributions of the six dimensions of
psychological well-being, stratified by country.

3.2. Comparing Denmark and Bulgaria

Figure 6 presents the CE plot and the angle plot obtained from comparing the Danish
and Bulgarian psychological well-being scales. The CE plot show a remarkable degree of
lacking comparability: The cumulative differences in the eigenvalues by far exceed what
could come about randomly if there really were no difference in the data structures. This is
also confirmed by the Kolmogorov-Smirnov and the Cramér-von Mises tests, which both
result in p-values that are virtually zero. The CE curve generally lies above zero, suggesting
that the Bulgarian dataset has larger eigenvalues for all but the last component, thereby
explaining more variance at lower dimensionalities.

Moving on to the angle plot, we find that the differences are primarily to be found in
the second, third, and fourth principal components (PCs). The blue arrows visualize the
decomposition of the principal components for the Bulgarian dataset in the coordinate sys-
tem of the Danish dataset. We see that PC2 also loads on PC3, that PC3 also loads on PC4,
and that PC4 also loads on PC2 and PC3. The red arrows visualize the decomposition of
the principal components for the Danish dataset in the coordinate system of the Bulgarian
dataset. Here, we see that PC2 also loads on PC4, that PC3 also loads on PC2 and PC4,
and that PC4 also loads on PC3. Thus, if we wish to understand why differences in the data
structures occur, an inspection of the loadings of components 2, 3 and 4 might be infor-
mative. The global test of differences in loadings results in p = 0.0000, which supports the
conclusion of differences in loading structures.

The chroma plot in Figure 7 allows us to look closer into these components. Here, we
find that the relative importance of the Community well-being and Supportive relationships
scales is much larger in the Bulgarian sample than in the Danish. In the Danish data, on
the other hand, we find that Vitality and Emotional well-being seem to play bigger roles, as
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Figure 6. CE plots (top panel) and angle plots (bottom panel) comparing Danish and Bulgarian data on
psychologicalwell-being. The CE plot is annotatedwith the p-values of the Kolmogorov-Smirnov and the
Cramér-von Mises tests of the hypothesis of no difference in data structures. In the angle plot, the blue
arrows show the principal components of the Bulgarian dataset decomposed in the coordinate system
of the principal components of the Danish dataset, while the red arrows illustrate the reverse (Colour
online).

they appear with larger loadings in more high-ranking components in this sample, relative
to the Bulgarian.

All in all, we find that psychological well-being does not seem to be the same concept
in Bulgaria and Denmark. The two countries disagree both in how many dimensions are
needed to capture the most important parts of the concept (as illustrated by the differences
in eigenvalues) and in how these dimensions are then weighted among the 6 scales (as
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Figure 7. Chroma plot for comparing Danish and Bulgarian data on psychological well-being. A chroma
plot comparing the 2nd, 3rd, and 4th principal components of the Bulgarian- and Danish psychological
well-being data. The component-bars are annotated with their relative variance contributions.

illustrated by the angle- and chroma plots). In Bulgaria, interpersonal features seem to be
more informative of psychological well-being, whereas in Denmark, individual character-
istics play a relatively larger role, corresponding well with the previous findings mentioned
above. Thus, the datasets are fundamentally different and we should therefore be wary
about combining them in a joint analysis, whichwas also the conclusion of the ESS authors,
though based on country-level aggregated statistics [7].Moreover, this also implies that two
countries cannot be ranked in terms of which country is ‘the most happy’, at least not by
referring to psychological well-being dimensions such as those encountered here.

3.3. Comparing Denmark and Sweden

We now turn to the comparison of Denmark and Sweden in terms of psychological well-
being. Figure 8 shows the CE- and angle plots for these two countries. In the CE plot,
we now find the cumulative eigenvalue curve to be just within the acceptance region of
the null-hypothesis. This is also reflected by the two tests, which now produce p-values
of pKS = 0.17 and pCvM = 0.11, respectively. Thus, it is not unreasonable to assume equal
eigenvalues in the two datasets.

The angle plot in Figure 8 shows that the two datasets agree very strongly about the
relative importance of the six scales in the six PCs, as almost all off-diagonal arrows are
practically non-existent. This is furthermore supported by the global test, which results
in p = 0.1980, also suggesting no difference in loadings. This implies that if one already
has the information held in the first PC from the Danish data, this information is in itself
mostly sufficient to describe the first PC of the Swedish data.

Looking at the chroma plot in Figure 9, the same tale is told once again: Here, we find
remarkably similar loading patterns in the first three components (which are responsible
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Figure 8. A CE plot (top panel) and an angle plot (bottom panel) comparing Danish and Swedish data
on psychological well-being. The blue arrows show the principal components of the Danish dataset
decomposed in the coordinate system of the principal components of the Swedish dataset, and the red
arrows illustrate the reverse (Colour online).

for almost 80% of the variance in both datasets), and slight, but increasing, differences in
the remaining three components. We therefore conclude that any differences in the data
structures of the Danish and the Swedish samples are related to the least important dimen-
sions of the datasets and that these dimensions are only responsible for less than 25% of the
variance in both datasets. In particular, this means that we can combine and compare the
Danish and Swedish datasets in ameaningful way and for instance conclude using Figure 1
that in general, Danes seem to be somewhatmore happy than Swedes, and in particular that
the least happy people in Denmark (represented by the 1st quartiles) are generally happier
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Figure 9. Chroma plot comparing the loading patterns of the Danish and the Swedish subsamples.
For each component, the bar is annotated with its cumulative variance contribution, that is, how much
variance can be explained by having information of this and the preceding components.

than the least happy people in Sweden. A more thorough, statistical investigation could
now be put to work on answering why this seems to be the case.

4. Conclusion and discussion

Three new tools, referred to collectively as Principal Component Analysis-based Data
Structure Comparisons (PCADSC), for the task of deciding if two datasets can be com-
bined for analysis were proposed and discussed. They all employ the principal component
decomposition of the empirical covariance matrix performed on two subsets of a dataset
in order to create three intuitive visualizations of data structure differences. The first visu-
alization, the cumulative eigenvalue plot, compares the eigenvalues from the two datasets.
The second visualization, the angle plot, uses the interpretation of eigenvalues as explained
variance to focus a comparison of loadings (eigenvectors). Finally, the third visulization,
the chroma plot, allows for qualitative explanations of differences in loading patterns in
selected principal components.

In an analysis of data from the 2012 version of the European Social Survey (ESS) project,
we illustrated that the PCADSC tools help inform analyses of inter-country differences
in psychological well-being and happiness. It should be noted that even though concerns
about pooling data from different countries are not yet very prevalent when it comes to
happiness rankings, the subject has been very well scrutinized in the field of international
educational rankings. For instance, the PISA tests have repeatedly been criticized for not
being meaningful objects of international comparisons, especially due to problems with
differential item functioning [8,9,19] and translation problems [2]. This highlights lack
of data comparability as an empirically relevant and concerning issue that there is no way
around:When conducting rankings, the issue of data structure heterogeneity should always
be addressed.
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Usually, when using PCA, the main interest lies in the scores, i.e. the coordinates
η�
j (xi − x̄) of the projections observations onto the loadings, but the eigenvalues and the

accompanying loadings are in fact more suitable objects for assessing data structure simi-
larity. If two dataset subsets have similar loadings, then they can be argued to measure the
same underlying quantities. Similar loadings can occur in situations where the two sets of
scores are different, for example if the two datasets come from two different populations
of subjects. On the other hand, if the loading patterns are different in the two subsets, then
this indicates that their respective variable interplays differ, and hence it would be criticiz-
able to use these variables for comparisons across the two subsets. The PCADSC tools are
novel in their emphasis on the information held in the loadings rather than the scores.

Though the PCADSC toolbox comprises three diagnostic plots as of now, the PCA
decomposition can of course be utilized further to bring about new PCADSC plots
that illustrate more aspects of data structure differences. For instance, the scree plot (as
introduced by Cattell [4]), which plots the ordered eigenvalues against their component
numbers, could easily be recreated as a PCADSC tool by creating scree plots for both data
subsets in the same coordinate system, yielding a simple graphical comparison. The resam-
pling approach used in the CE plot could then be adopted, thus annotating the scree plots
with resampled curves. This general approach to model-fit evaluation is very helpful in
combination with permutation tests, as inspired by Lin and colleagues [10].

The proposed methods also have limitations. First of all, as PCA is performed after
standardization of the variables, the PCADSC methods cannot detect differences in nei-
ther mean values nor in marginal variances – this information is thrown away as the very
first step. However, such differences are of a fundamentally different nature than those we
have discussed so far. Differences in mean values are often the main interest of the anal-
ysis and should of course not be regarded as a data comparability issue. Differences in
marginal variances, on the other hand, can pose some modeling challenges, but none that
are not generally solvable by use of random effects models. We therefore do not consider
this property of PCADSC to be a major drawback.

A more prominent limitation is the fact that the PCASDC methods are only valid for
variables that have a numerical interpretation. In particular, this means that the methods
cannot be used for data with nominal categorical variables. This limitation is inherited
from the PCAmethod and thus,moving beyond it will entail replacing the PCA framework
with a more general one. Multiple correspondence analysis (MCA) is often suggested as a
categorical extension of PCA [1] and includingMCA in the PCADSC tools is thus a natural
next step.

Moreover, though we have illustrated the discriminatory power of PCASDC in one
simulated- and on real-life data example, of course further evaluation of its performance
is needed. While the best feature of PCADSC is perhaps the intuitive, visual nature of the
tools, it is also the biggest weakness. For statistical methods that result in a number (or a set
of numbers), the standard way of evaluating performance is to report on simulation stud-
ies, but in the case of statistical methods that report graphics this is not feasible. Therefore,
a systematic evaluation of the performance of the PCADSC methods is not very straight-
forward to design: It really depends on whether or not users can detect actual differences
in data structures by using the diagnostic plots.We suggest that the variability of the meth-
ods could be studied further usingWally plots [5], which are learning tools developed for
teaching students how to interpret residual plots. First in line as a topic for more thorough
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investigations of performance is the sensitivity towards the sample sizes of the two datasets,
n1 and n2.

A different aspect of the data size, namely the number of variables d, may also limit the
useability of the PCADSC tools. While the CE plot scales well with large d, the angle plot
and the chroma plot can become difficult to read if there are a lot of variables and thus
a large number of principal components. However, because the angle plot lets the arrow
length depend on the size of the correpsonding eigenvalue, its visual impression should
help guide a user towards influential and dissimilar components even though d is large.
Andwhen these components have been identified, the chroma plot can focus only on them,
thereby avoiding plotting the loading patterns of too many components.

All in all, the PCADSCmethods represent a first step towards addressing a known issue
that has otherwise been met with unsatisfactory ad-hoc methods whose assumptions rest
upon the very hypothesis they are testing. The PCADSC tools performquitewell in the data
example provided here, yielding conclusions that are in accordance with well-established
theories and they are simple to use and test further using the PCADSC R package.
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